UNIVERSIDAD ESTATAL AMAZONICA
DEPARTAMENTO DE CIENCIAS DE LA VIDA

Nombre de la Carrera

INGENIERIA AMBIENTAL

Denominación del Título a obtener

INGENIERA AMBIENTAL

Título del Proyecto de Investigación

ANÁLISIS DE CICLO DE VIDA DEL TÉ DE JAMAICA

LISETH GABRIELA PORRAS TORRES

Autora

Dr. EBERTO PABLO GUTIÉRREZ MORALES, PhD

Director del Proyecto

PUYO-ECUADOR

2018
RESUMEN

El presente trabajo aplica la metodología del Análisis de Ciclo de Vida determinada por la ISO 14040, el crecimiento de la industria de alimentos y bebidas representa una gran problemática respecto a materia de cuidado y protección ambiental, la demanda de la producción agrícola e industrial del té de Jamaica constituye la creación de nuevos sectores de emprendimiento en el país.

La presencia del sector industrial adquiere repercusiones sobre el medio ambiente, por ello el análisis de ciclo de vida por medio del uso de la herramienta informática SIMAPRO versión DEMO 8.1, permitió determinar los principales escenarios de contaminación y la determinación de falencias en los procesos de producción del té de Jamaica, permitiendo obtener como resultado un perfil medio ambiental que permita hacer recomendaciones orientadas a la reducción de impactos ambientales.

Palabras Claves: ACV, té de Jamaica, Impactos ambientales, SimaPro.
ABSTRACT

The present work applies the methodology of the Life Cycle Analysis determined by ISO 14040, the growth of the food and beverage industry represents a big problem regarding the matter of care and environmental protection, the demand of the agricultural and industrial production of tea of Jamaica constitutes the creation of new sectors of entrepreneurship in the country.

The presence of the industrial sector has repercussions on the environment, for this reason the life cycle analysis through the use of the SIMAPRO software tool version DEMO 8.1, allowed to determine the main contamination scenarios and the determination of shortcomings in the production processes of tea from Jamaica, allowing to obtain as a result an environmental profile that allows making recommendations aimed at reducing environmental impacts.

Key words: LCA, Jamaica tea, Environmental impacts, SimaPro
Tabla de contenido

CAPITULO I ... 7
1. INTRODUCCION ... 9
 1.1 PLANTEAMIENTO DEL PROBLEMA Y JUSTIFICACION ... 10
 1.2 FORMULACION DEL PROBLEMA ... 10
 1.3 OBJETIVOS ... 11
 1.3.1 Objetivo General ... 11
 1.3.2 Objetivos Específicos ... 11
CAPITULO II ... 12
2. FUNDAMENTACION TEORICA DE LA INVESTIGACION ... 12
 2.1 ANTECEDENTES .. 12
 2.1.1 Panorama general de la pequeña industria en Ecuador .. 12
 2.1.2 La Industria de alimentos y bebidas en Ecuador y su creciente 13
 2.1.1 La Gestión ambiental y sus herramientas ... 14
 2.1.2 ¿Cómo surge el análisis del ciclo de vida (ACV)?.. 15
 2.1.3 Antecedentes Internacionales y su Evolución ... 16
 2.1.4 Análisis del ciclo de vida como herramienta de la gestión ambiental 17
 2.2 BASES TEORICAS .. 18
 2.2.1 Flor de Jamaica origen y usos ... 18
 2.3 Proceso de industrialización de la Flor de Jamaica ... 20
 2.3.1 Impactos generados por la industria de bebidas y refrescos 22
 2.3.2 Análisis de ciclo de vida ... 24
 2.3.3 La ISO y el Análisis de Ciclo de Vida ... 24
 .. 26
 2.3.4 Herramienta Informática SIMAPRO ... 26
CAPITULO III ... 28
3. METODOLOGIA DE LA INVESTIGACION .. 28
 3.1.1 FASE 1.- Objetivos y Alcance de estudio ... 29
 3.1.2 FASE 2.- Análisis del Inventario ... 32
 3.1.3 FASE 3 y 4.- Identificación de impactos e interpretación 33
 3.2 LOCALIZACION .. 34
 3.3 TIPO DE INVESTIGACIÓN ... 35
 3.4 MÉTODOS DE INVESTIGACIÓN ... 35
CAPITULO IV .. 36
4. RESULTADOS Y DISCUSIÓN .. 36
 4.1 Análisis del ciclo de vida (ACV) .. 36
 4.1.1 FASE 1.- Objetivos y Alcance de Estudio 36
 4.1.2 Requisitos relativos a los datos 38
 4.2 FASE 2.- Análisis de Inventario ... 38
 4.2.1 Análisis de Inventario del Proceso de purificación del agua 39
 4.2.2 Análisis de Inventario del Proceso de Cocció y Mezclado 41
 4.2.3 Análisis de Inventario del Proceso de Envasado (Codificación) 42
 4.2.4 Análisis de Inventario de Distribución-Consumo 44
 4.3 FASE 3 Y 4.- Identificación de impactos e interpretación 44
 4.3.1 Análisis de Impacto – Caracterización 47
 4.3.2 Análisis de Impacto- Normalización 49
 4.3.3 Análisis de Impactos- Ponderación 51
 4.3.4 Análisis de Impactos- Puntuación Única 53
CAPITULO V .. 55
5. CONCLUSIONES Y RECOMENDACIONES 55
 CONCLUSIONES ... 55
 RECOMENDACIONES ... 56
CAPITULO VI .. 57
6. Bibliografía .. 57
TABLA DE FIGURAS

Figura 1: Herramientas conceptuales usadas en los sistemas de gestión ambiental de sistemas de producción o productos. 15
CONTENIDO DE TABLAS
CAPITULO I

1. INTRODUCCION

En las últimas décadas, el sistema industrial de alimentos y bebidas a nivel mundial posee una gran representatividad en cuanto a inversión económica, producción de bienes, generación de empleo, etc. Este sector ha experimentado profundas modificaciones y un crecimiento impresionante en los últimos años en nuestro país, la Ministra de Industrias Verónica Sión a través del Ministerio de Industrias y productividad (MIPRO) menciona que en el 2012 existió una tasa de crecimiento de 4.8% una de las tasas más altas de los países de la región. Asimismo, señaló que la producción manufacturera industrial, que se ubicó en el 6.8%, corresponde especialmente a los sectores de bebidas en un 21.9%, maquinarias y equipo en un 21.8%, camarón en un 16.9%, transporte 15.7%, manufacturas 9.3%, lácteos 7.3%, entre otros, ubicando a este sector como uno de los más grandes y productivos a nivel nacional. (MIPRO, 2013)

En la actualidad el crecimiento industrial a más de generar empleo y productividad ha provocado efectos negativos sobre el sistema medioambiental, lo cual dificulta el llegar a las futuras generaciones un medio ambiente apto para la continuidad de la civilización.

En el marco de la globalización de las economías no es posible estar al margen de esta preocupación. En estos días, los consumidores son más exigentes, tanto en la conservación de los recursos naturales y en la protección del medio ambiente, como en la calidad de los productos y servicios que reciben. Por tal motivo, la industria enfrenta el reto de producir con alta calidad y satisfacer las expectativas de los consumidores y de otras partes interesadas en el tema de la protección del medio ambiente. ‘desde el nacimiento hasta la tumba’ es lo que se denomina ciclo de vida de un producto (Romero, 2003)

El impacto ambiental de un producto inicia con la extracción de las materias primas y termina cuando la vida útil del producto finaliza, convirtiéndose en un residuo que ha de ser gestionado adecuadamente. Durante la fabricación, las empresas deben evaluar el impacto ambiental que tiene su proceso, además tienen la responsabilidad sobre el impacto que ocasionan las partes involucradas en el proceso hasta que el producto llega al cliente consumidor, (por ejemplo proveedores, distribuidores y consumidores). (Romero, 2003)
El desarrollo industrial requiere una sostenibilidad ambiental por lo que se han desarrollado herramientas de la gestión ambiental como el Análisis de Ciclo de Vida y distintos tipos de software que contribuyen a realizar este análisis como el SIMAPRO. El objetivo de esta herramienta es el estudio del cuidado y conservación del medio ambiente promoviendo la generación y uso de alternativas sostenibles lo que permitirá adoptar políticas, decisiones de tipo ambiental y productiva que permitan corregir los desatinos en este sector.

1.1 PLANTEAMIENTO DEL PROBLEMA Y JUSTIFICACION

El Ecuador ha visto un incremento en el sector industrial de la producción de bebidas en base a bienes endémicos como la guayusa o mezclas de bienes como la bebida de la horchata. Debido a la gran demanda que se ha registrado en los últimos años, actualmente el Ministerio de Agricultura y Ganadería a través de la Dirección provincial del Oro promueve el cultivo e industrialización de la flor de Jamaica con el fin de convertirlo en un nuevo sector productivo y de emprendimiento en el país. (MIPRO, 2017)

Al tratarse de una industria joven y prometedora es necesario y apropiado realizar esta actividad bajo un modelo de desarrollo sustentable y ambientalmente equilibrado, siendo necesario realizar un análisis de ciclo de vida de la producción del Té de Jamaica con la finalidad de evaluar los impactos ambientales y crear estrategias que permitan mitigar estos impactos.

1.2 FORMULACION DEL PROBLEMA.

La contaminación ambiental proviene como consecuencia de distintas actividades en su mayoría creadas por el hombre, el mal manejo y uso desmedido de los recursos naturales ha provocado cambios en los ecosistemas algunos de ellos irreversibles y el agotamiento de los mismos ,el incremento del sector industrial y el uso de recursos fósiles como fuente principal del sector manufacturero ha provocado impactos significativos como la contaminación atmosférica, deforestación, daños a la salud entre otros. (Ver Anexo 1)
Por ello es importante que los nuevos procesos de industrialización tomen en cuenta el uso de herramientas de la gestión ambiental en busca de soluciones y alternativas dentro del escenario ambiental, para el presente trabajo se plantea el ACV de la producción de té de Jamaica evaluada mediante la metodología de la ISO 14040 con el uso del software SIMAPRO versión DEMO 8.1. Con el fin de determinar cuál sería el proceso de impacto ambiental más significativo dentro del ACV de la producción de té de Jamaica.

1.3 OBJETIVOS

1.3.1 Objetivo General

Determinar mediante el ACV el impacto ambiental generado en la fase de producción del té de Jamaica, mediante el uso del software SIMAPRO versión DEMO 8.1.

1.3.2 Objetivos Específicos

- Identificar los principales recursos, materias prima y procesos que intervienen en la producción del té de Jamaica.

- Identificar los impactos ambientales más significativos dentro de la fase de producción del té de Jamaica mediante el uso del software SIMAPRO versión DEMO 8.1.
CAPITULO II

2. FUNDAMENTACION TEORICA DE LA INVESTIGACION

2.1 ANTECEDENTES

2.1.1 Panorama general de la pequeña industria en Ecuador

El establecimiento y auge de la micro y pequeña empresa tiene un papel central en la economía, al contribuir no sólo al desarrollo económico, sino también social y político de un país. Su presencia a nivel nacional permite amortiguar la caída del empleo, al absorber un gran porcentaje de la fuerza de trabajo desempleada, servir como centros de capacitación de mano de obra no calificada, favorecer una mayor distribución de ingresos y permitir el crecimiento de actividades económicas. (Guerrero & Cruz, 2017).

La Secretaria Nacional de Planificación y Desarrollo, menciona que el sector manufacturero en Ecuador al igual que en otros países, es muy importante en la economía nacional pues genera importantes encadenamientos productivos tanto hacia atrás como hacia adelante. También es fuente de empleo, pero sobre todo su nivel de desarrollo es un indicador de la sofisticación de la economía en general. Por este motivo, es importante conocer el desempeño en el tiempo de este importante sector y tratar de delinear los principales factores que están guiando su cambio (SENPLADES, 2009).

Las pequeñas empresas, en conjunto con las microempresas (con menos de 10 trabajadores) representan más del 80% del total de empresas en el país, las cuales se concentran principalmente en cuatro sectores productivos: alimentos y bebidas, sustancias químicas, productos derivados del carbón, hule, plástico y metales comunes, sectores que por sus características en sus procesos de trabajo pueden ser de gran peligro para los trabajadores y de mayor rentabilidad económica, el valor de la producción de la industria manufacturera según la Encuesta de Manufactura y Minería del INEC para el año 2008, fue de 17 073 millones de dólares, constituyendo la industria de elaboración de productos alimenticios la más importante con una producción de 7 266 millones de dólares que representó el 42,6% del total, la segunda industria en importancia fue la fabricación de substancias y productos químicos con 1,319 millones de dólares y un peso relativo de 7,7% (INEC, 2008).
La falta de capital, instalaciones adecuadas, maquinaria y tecnología actualizada, características propias de estos establecimientos, son limitantes a las que se enfrentan las micro y pequeñas empresas (Guerrero & Cruz, 2017). Ante este panorama, se crea la necesidad de diseñar un mecanismo o sistema que permita evaluar los impactos ambientales, sociales y económicos que se generan en este sector, con la finalidad de maximizar beneficios y disminuir costos (FLACSO ECUADOR, 2010-2012).

2.1.2 La Industria de alimentos y bebidas en Ecuador y su creciente.

La manufactura es uno de los sectores más importantes para un país, permite la elaboración de productos con un mayor nivel de valor agregado, en los cuales existe buena capacidad de diferenciación y, sobre todo, un menor nivel de volatilidad en los precios. El desarrollo de este sector fortalece al país, ya que más allá de lo mencionado, también genera fuentes de empleo calificadas y formales. De acuerdo al INEC, a septiembre de 2017 esta actividad generó el 11% del empleo total del país (Costa de García, 2016). El consumo de alimentos y bebidas es de carácter masivo y la industria dedicada a la elaboración de los mismos tiene una particular relevancia dentro de la producción y desempeño económico nacional (Carrillo, 2009).

El sector industrial de elaboración de alimentos y bebidas representa el mayor peso dentro de la manufactura (38%) y se debe a que Ecuador genera variedad de alimentos y bebidas que ha desarrollado la industria en esta rama. En parte se importan insumos y también bienes de capital, lo que hace que su evolución también dependa de la de la demanda interna y de las medidas de comercio exterior que se hayan adoptado. A pesar de que este sector ha tenido todos los años tasas de crecimiento positivas dentro del periodo analizado, los años con variaciones más bajas fueron 2009, 2015 y 2016 con variaciones de 0,4%, 0,4% y 0,2%, respectivamente. De igual forma, el nivel de consumo incide en estos resultados, al igual que el acceso a mercados externos. (EKOS, 2018).

En el periodo 2013 – 2016, el sector de Preparación de alimentos y bebidas suma más de 21,095 millones de dólares en exportaciones, que representa el 19,2% del total de productos exportados por el Ecuador. En el periodo 2013 –2016 la principal actividad de exportación es la preparaciones de carnes, pescados o crustáceos; y representa el 42,5% del total del sector de alimentos y bebidas. La actividad que tiene mayor participación en
el segmento de preparaciones alimenticias diversas es la de preparaciones de hortalizas, frutas con un 56,6%, seguido de la otras preparaciones con un 35,2% (CFN, 2017).

2.1.1 La Gestión ambiental y sus herramientas

Desde principios de los años noventa, los sistemas de gestión medioambiental constituyen la herramienta más extendida y de mayor credibilidad de la que disponen las organizaciones para evaluar y mejorar sus niveles de comportamiento medioambiental y para asegurar la transparencia y fiabilidad de la comunicación, tanto hacia el interior como hacia el exterior, de los efectos de la organización sobre el medio ambiente. La evolución del número de empresas que han implantado y certificado un sistema de gestión medioambiental conforme con los requisitos de la Norma ISO 14001 ha sido espectacular. En diciembre del año 2000, 22.897 empresas habían obtenido dicha certificación en 98 países. El 48,13% de ellas eran europeas. En el ámbito comunitario, las empresas registradas en el sistema EMAS son comparativamente mucho menores. En abril del año 2002, 3.908 organizaciones de la Unión Europea (y de Noruega) habían obtenido dicho registro, estando representado el Estado Español por 183. (Instituto de Estudios Políticos para América Latina y Africa, 2013)

La gestión ambiental debe considerar cada una de sus herramientas que ofrecen diferentes formas de afrontar el problema y suministrar diversas informaciones útiles a la hora de una toma de decisión, teniendo en cuenta que cada una de ellas recoge, estructura y valora informaciones según determinados aspectos, resultando, en algunos casos, hasta complementarios entre sí. (Moreno & Espí, 2008)

En la Imagen 1 se muestran algunas de las principales herramientas hoy disponibles para la gestión medioambiental de sistemas de producción o productos. (Society of Environmental Toxicology and Chemistry, 1999)
2.1.2 ¿Cómo surge el análisis del ciclo de vida (ACV)?

La crisis energética de 1970 influenció principalmente la conciencia ambiental. Uno de los resultados obtenidos fue un detallado sistema para analizar la energía necesaria que se requiere para fabricar un producto individual. La ACV fue influenciada por este proceso y se desarrolló casi en paralelo a él, posteriormente se amplió para que incluyera, no sólo el agotamiento de los recursos energéticos, sino también otros recursos y el impacto de emisiones y generación de residuos. El interés en la implementación de ACV se ha incrementado desde la década de los 80, período donde se desarrollaron dos cambios importantes: primero, los métodos para cuantificar el impacto del producto en distintas categorías de problemas ambientales (tal como calentamiento global y agotamiento de los recursos); y segundo, los estudios de ACV comenzaron a estar disponibles para uso público. La Society of Environmental Toxicology and Chemistry, SETAC, es la principal organización que ha desarrollado y liderado las discusiones científicas acerca del ACV.

En 1993 formuló el primer código internacional: “Código de prácticas para ACV” (Code of Practice for LCA), con el fin de homogeneizar los diversos estudios realizados para que siguieran una misma metodología. Posteriormente, la International Standards Organization, ISO, apoyo este desarrollo para establecer una estructura de trabajo, uniformar métodos, procedimientos, y terminologías, debido a que cada vez se agregaban nuevas etapas, se creaban metodologías, índices, etc. Hoy, el conocimiento de cómo realizar una ECV se ha desarrollado y difundido rápida y ampliamente, sobre todo en...

<table>
<thead>
<tr>
<th>Herramienta</th>
<th>Traducción</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA – Risk Assessment</td>
<td>Análisis de Riesgos</td>
</tr>
<tr>
<td>EIA – Environmental Impact</td>
<td>Estudio de Impacto Ambiental</td>
</tr>
<tr>
<td>EAu – Environmental Auditing</td>
<td>Auditoria Ambiental</td>
</tr>
<tr>
<td>EPE – Environmental Performance Evaluation</td>
<td>Evaluación del Comportamiento Ambiental</td>
</tr>
<tr>
<td>SFA – Substance Flow Analysis</td>
<td>Análisis del Flujo de Sustancias</td>
</tr>
<tr>
<td>EMA – Energy and Material Analysis</td>
<td>Análisis de Material y Energía</td>
</tr>
<tr>
<td>ISCM – Integrated Substance Chain Management</td>
<td>Gestión Integral de Sustancias</td>
</tr>
<tr>
<td>PLA – Product Line Analysis</td>
<td>Análisis de Linea de Producto</td>
</tr>
<tr>
<td>LCA – Life Cycle Assessment</td>
<td>Análisis del Ciclo de Vida</td>
</tr>
</tbody>
</table>

Figura 1: Herramientas conceptuales usadas en los sistemas de gestión ambiental de sistemas de producción o productos.

Fuente: Society of Environmental Toxicology and Chemistry, 1999
Europa y Norteamérica. Los beneficios que proporciona esta técnica han sido reconocidos y, por lo mismo, su masificación en las gerencias ambientales ha ido en aumento. (Gobierno de Chile, 2001)

2.1.3 Antecedentes Internacionales y su Evolución

El desarrollo del ACV se ocasionó casi simultáneamente en Estados Unidos y Europa. Si bien el primer ACV fue realizado en 1969 por el Midwest Research Institute (MRI) para la Coca-Cola, donde la premisa fundamental fue disminuir el consumo de recursos y, por lo tanto, disminuir la cantidad de emisiones al ambiente. Los estudios continuaron durante los años setenta, y grupos como Franklin Associates Ltd. junto con la MRI realizaron más de 60 análisis usando métodos de balance de entradas/salidas e incorporando cálculos de energía. Entre 1970 y 1974, la Environmental Protection Agency (EPA) realizó nueve estudios de envases para bebidas. Los resultados sugirieron no utilizar el ACV en cualquier estudio, especialmente para empresas pequeñas, ya que involucra costos altos, consume mucho tiempo e involucra micro-manejo en empresas privadas.

En Europa, estudios similares se realizaron en la década de los sesenta. En Gran Bretaña, Lan Boustead realizó un análisis de la energía consumida en la fabricación de envases (de vidrio, plástico, acero y aluminio) de bebidas. Pero fue a partir de los años ochenta cuando la aplicación del ACV se incrementó. En esta misma década fue cuando se desarrollaron dos cambios importantes: primero, los métodos para cuantificar el impacto del producto en distintas categorías de problemas ambientales (tal como el calentamiento global y agotamiento de los recursos); y segundo, los estudios de ACV comenzaron a estar disponibles para uso público. La Society of Environmental Toxicology and Chemistry (SETAC) es la principal organización que ha desarrollado y liderado las discusiones científicas acerca del ACV.

En 1993, formuló el primer código internacional: Código de prácticas para el ACV (Code of Practice for Life Cycle Assessment), con el fin de homogeneizar los diversos estudios realizados para que siguieran una misma metodología. Esto impulsó el inicio de desarrollos masivos de ACV en diversas áreas de interés mundial, pues se realizaron conferencias, talleres y políticas sobre ACV. Posteriormente, la ISO apoyó este desarrollo para establecer una estructura de trabajo, uniformizar métodos, procedimientos, y
terminologías, debido a que cada vez se agregaban nuevas etapas, se creaban metodologías, índices, programas computacionales dedicados a realizar ACV en plantas industriales, etc. Después de treinta años el ACV ha tenido un avance impresionante, sin embargo, se reconoce que la técnica está en una etapa temprana de su desarrollo. Muchos ACV realizados han sido parciales (sólo se ha practicado la fase de inventario) y aplicados mayoritariamente al sector de envases (aproximadamente un 50%), seguidos de los de la industria química y del plástico, los materiales de construcción y sistemas energéticos, y otros menores como los de pañales, residuos, etc. Sólo en los últimos años se ha podido introducir la fase de evaluación de impacto en los estudios realizados. (Romero, 2003)

(Ver Imagen 2)

Figura 1: Ejemplo de la definición de los límites del sistema; Criterio: Todos los procesos > de 2% emisiones y recursos.

Fuente: Centro Nacional de Producción más Limpia, 2000

2.1.4 Análisis del ciclo de vida como herramienta de la gestión ambiental.

La gestión ambiental cuenta con diferentes herramientas, entre ellas: los Sistemas de Gestión Ambiental, la Evaluación de Impactos Ambientales, la Producción Más limpia, el Análisis del Ciclo de Vida (ACV), entre otros.

El ACV de un producto es una metodología estandarizada a partir de la norma ISO 14044 que tiene en cuenta la premisa que “los recursos energéticos y materias primas no son
ilimitados y que, normalmente, se utilizan más rápido de cómo se remplazan o como surgen nuevas alternativas”. Así, para el diseño o rediseño de los productos, el ACV se vale de modelaciones que permiten caracterizar y cuantificar los impactos ambientales potenciales asociados a las diferentes etapas de su ciclo de vida, logrando así la identificación de escenarios de producción eco-eficientes, entendidos como la combinación de procesos, o cambio de materias primas o insumos que conlleven a una menor utilización de recursos y a la generación de menores impactos ambientales en las etapas del ciclo de vida del producto: desde la extracción de materias primas, su transformación en un producto, su uso por el consumidor y finalmente su disposición final o aprovechamiento. (Carmona, Cardona, & Restrepo, 2017).

A nivel de producto, el ciclo de vida del mismo involucra componentes que se relacionan íntimamente con los planes de producción más limpia. Uno de los más críticos es el de los materiales de empaque, el empleo de plásticos para envases, tapas, envolturas y otros, representa un reto para la industria desde el punto de vista medioambiental. (Restrepo, 2006)

2.2 BASES TEÓRICAS

2.2.1 Flor de Jamaica origen y usos

La Jamaica (Hibiscus sabdariffa L.), es una planta arbustiva semileñosa que pertenece a la familia de las Malvaceae y es un cultivo anual nativo de África tropical. Actualmente, el cultivo es extensamente cosechado en la India, Sudán, Egipto, Senegal y Tailandia por sus agradables cálices de color rojo los cuales son usados para hacer mermeladas, gelatinas y refrescos. En Ecuador la planta ha sido adaptada al clima trópico húmedo perteneciente a la región oriental del país, las principales entidades productoras de Jamaica son Sucua, el Pasaje, el Prado, entre otros. (Alarcón, Ariza, Barrios, Noriega, & Legaria, 2012).

A la flor de Jamaica se le atribuyen diferentes usos por sus múltiples propiedades alimenticias y medicinales, así por ejemplo:
• Los extractos de las flores de Jamaica se emplean como colorantes naturales para los alimentos, en emulsiones para las bebidas y en la preparación de mermeladas y gelatinas de color rojo brillante y placentero con un sabor ácido.
• La cocción de las flores también se usa como un sustituto del té o el café por personas que sufren de problemas de salud.
• La Jamaica, por su fibra y cálices, se emplea asimismo en la manufactura de cordajes y canastas, así como en la preparación de bebidas refrescantes.
• La semilla constituye una fuente excelente de aceite de cocina, las propiedades nutricionales del aceite y la semilla hacen que sea una fuente invaluable de alimento debido a su contenido proteico y calórico.
• Los tallos tiernos, hojas y cálices se usan en la preparación de sopas y salsas.
• Las antocianinas extraídas de las flores secas de la Jamaica son pigmentos naturales que se usan en la medicina y en la manufactura de alimentos. (Carvajal, Waliszewski, & Infansón, 2006)
2.3 Proceso de industrialización de la Flor de Jamaica

Recepción, limpieza y selección de materia prima

Previa a la elaboración de la bebida de Flor de Jamaica se debe procesar la materia prima:

- **Recepción**: La recepción de la materia prima se realiza en un lugar completamente limpio con una temperatura y espacio adecuado con la finalidad de mantener la materia prima en un ambiente limpio y fresco hasta su próximo proceso.

- **Selección**: La selección de la materia prima se realiza de manera manual, donde se elige exclusivamente las flores en buen estado; en este proceso se toma en consideración las características de textura y color.

- **Limpieza**: La limpieza es uno de los pasos fundamentales al momento de procesar la flor de Jamaica, esta va a depender del tipo de mecanismo que se esté utilizando para la cosecha, si es manual se facilita el proceso ya que solo se deberá retirar los residuos que quedaron de semillas u hojas que se hayan pasado al momento de la separación del cálice de la planta.
• Molienda: Esta operación la realizamos con un molino artesanal, hasta obtener la galvanometría deseada (Cevallos, 2015).

Fases de elaboración de la bebida

• Primera fase: El agua ingresa al tanque de cocción, en la cual se eliminan los microorganismos, este proceso dura alrededor de 15 minutos.
• Segunda fase: Con una balanza manual el operador regulara las cantidades de cada uno de los componentes, de manera que le producto final tenga las mismas características durante toda la producción.
• Tercera fase: En esta etapa se realiza el proceso de mezclado, con el agua y el jarabe de azúcar, el agua pasa al tanque de fusión donde se vierte la materia prima (Jamaica) libre de impurezas, hasta tomar un color rojizo este proceso lleva un tiempo aproximado de 20 minutos (Cevallos, 2015).

Envasado

El líquido se coloca dentro de la botella (recipientes reciclables) mediante válvulas que no tienen contacto con la boca de la botella, con el objetivo de evitar contaminaciones cruzadas. El nivel de llenado se controla de forma electrónica, para asegurar que todas las botellas lleven la misma cantidad de producto.

Inmediatamente después de haberse llenado, cada botella recibe una tapa estéril, la cual es enroscada mediante una máquina, que asegura que todas las tapas vayan en su sitio para impedir que entren contaminantes en la botella envasada (Rivera, 2015)

Etiquetado, Codificado y Embalado del producto

La botella sellada que sale de la llenadora es transportada por una banda mecánica la cual hace que esta ingrese al proceso de etiquetado, donde una dicha maquinaria cumple la función de cortar y colocar en posición correcta las etiquetas que vienen en rollos continuos.

El código de fecha de vencimiento e identificación del lote es uno de los puntos más importantes del envase, pues es el que permite su identificación a lo largo de toda la cadena de distribución hasta el consumidor final.

El código es impreso mediante una impresora que inyecta tinta impulsada con aire, dicho código muestra en la línea superior la fecha de vencimiento del producto y en la inferior
la fecha y hora que su codificación, por último se procede a empacar y embalar el producto para ser embodegado y distribuido a los puntos de comercialización. (Jacome, Gonzalez, & Saltos, 2010)

2.3.1 Impactos generados por la industria de bebidas y refrescos
Desde el punto de vista ambiental y con relación a la toxicidad de las descargas líquidas, el sector agroindustrial, a excepción de las ramas de curtiembres y pulpa de papel, suele considerarse como de bajo impacto en comparación con otros sectores industriales. Sin embargo, por el volumen de efluentes y residuos que puede generar, los niveles de adecuación de estas descargas a los estándares establecidos en las normas y su ubicación con respecto a los cuerpos de agua superficiales, este sector puede adquirir una categoría tan importante como aquellos con mayor potencial de impacto ambiental. El sector ha sido calificado como de impacto intermedio (tipo B) sobre la salud y el ambiente, y responsable de aproximadamente el 50% de las descargas líquidas totales generadas (Sánchez, Najul, Ortega, & Ferrara, 2009)

Los residuos generados por las empresas fabricantes de bebidas refrescantes de manera general son principalmente residuos de envases y embalajes de materias primas (vidrio, cartón, plástico y chatarra) y aguas residuales.

Dentro de estos residuos generados se pueden diferenciar residuos directos y otros residuos indirectos: Los residuos directos generados en el proceso productivo son principalmente los rechazos de materiales utilizados en la fase de envasado (PET, acero y vidrio). Los indirectos son los residuos de embalajes de productos incorporados al proceso (cartón, contenedores de plástico, palés de madera…), los residuos de envases de productos utilizados para la limpieza y mantenimiento de la maquinaria y las instalaciones, las aguas residuales y los residuos generados en su tratamiento (lodos de depuradora) (CIBR, 2015).

A todo esto se une el objetivo de mantener el equilibrio económico y ambiental entre el sector industrial y el medio ambiente, para progresar en la sostenibilidad de los alimentos y bebidas es necesaria la mejora en cada una de las etapas de sus ciclos de vida y la colaboración entre los agentes implicados en la cadena de valor del producto. De este modo, las industrias deben proponer medidas para contribuir al desarrollo de un abastecimiento sostenible de materias primas; reducir el desperdicio de alimentos; colaborar con asociaciones de consumidores e instituciones interesadas en la promoción de la sostenibilidad medioambiental y promover el cálculo de la huella ambiental de los productos. (Sanchez Pello, 2014)
2.3.2 Análisis de ciclo de vida

El ACV constituye una de las principales herramientas para valorar el desarrollo sostenible de los productos y servicios. Es una herramienta de gestión ambiental que evalúa de modo sistemático los impactos ambientales de un producto a través de su ciclo de vida desde la adquisición de la materia prima hasta el uso final (Benavides, Quinteros, & Herrera, 2017). El estudio del ACV incluye el ciclo completo del producto, proceso o actividad, teniendo en cuenta las etapas de: extracción y procesado de materias primas; producción, transporte y distribución; uso, reutilización y mantenimiento; y reciclado y disposición del residuo (Rieznik & Hernandez, 2005).

Esta herramienta de gestión ambiental se encuentra desarrollada a través de las normas ISO 14040 e ISO 14044 (Organización Internacional de Normalización) sobre gestión ambiental, donde se presenta la metodología, los principios y conceptos básicos para realizar el análisis. El ACV está definido por las fronteras del sistema en estudio y consiste en llevar la contabilidad de los impactos ambientales más significativos (gases de efecto invernadero, acidificación, eutrofización, etc.) asociados a los materiales y la energía consumida y generada dentro de los límites de ese sistema para obtener el producto deseado. A través de la identificación de la función del sistema en estudio, se establece la unidad funcional, la cual es una magnitud física que describe una propiedad del producto, cantidad (1L, 1Kg) energía contenida (1KJ), servicio que presta (1Km), etc. Con el fin de cuantificar, referida a esta unidad, las corrientes de materia y energía que entran y salen de los límites del sistema. (Benavides, Quinteros, & Herrera, 2017)

A sí mismo, a nivel de producto el ciclo de vida del mismo involucra componentes que se relacionan íntimamente con los planes de producción más limpia. Uno de los más críticos es el de los materiales de empaque, el empleo de plásticos para envases, tapas, envolturas y otros, representa un reto para la industria desde el punto de vista medioambiental. (Restrepo, 2006)

2.3.3 La ISO y el Análisis de Ciclo de Vida

En el conjunto de normas de estandarización, la ISO 14040 es la relativa al ACV. Dada su complejidad, esta normativa establece un protocolo el cual debe ajustarse todo estudio de ACV. La ISO 14040 da la siguiente definición del ACV:
«El ACV es una técnica para determinar los aspectos ambientales e impactos potenciales asociados a un producto: compilando un inventario de las entradas y salidas relevantes del sistema; evaluando los impactos ambientales potenciales asociados a esas entradas y salidas, e interpretando los resultados de las fases de inventario e impacto en relación con los objetivos del estudio» (ISO 14040, 1997).

El Análisis de Ciclo de Vida (ACV) es una técnica para evaluar los aspectos y potenciales impactos ambientales asociados a un producto mediante:

- Compilación de un Inventario de las Entradas / Salidas relevantes de un sistema de producto
- Evaluación de los impactos potenciales asociados a esas Entradas y Salidas
- Interpretación de los resultados del Análisis de Inventario y de Impacto en relación con los objetivos del estudio (Bernatene & Canale, 2018)

Dentro de la normalización ISO se deben distinguir normativas e informes técnicos. A día de hoy se han elaborado cuatro normativas relacionadas con el ACV:

- ISO 14041: Gestión medioambiental, ACV, Definición del objetivo y alcance y el análisis del inventario del ciclo de vida (1998). En esta normativa se especifican las necesidades y procedimientos para elaborar la definición de los objetivos y alcance del estudio y para realizar, interpretar y elaborar el informe del análisis del ICV (LCI).
- ISO 14042: Gestión medioambiental, ACV, Evaluación del Impacto del Ciclo de Vida; Environmental management LCA-LCIA/Life Cycle Impact Assessment (2000). En ella se describe y establece una guía de la estructura general de la fase de Análisis del Impacto del Ciclo de Vida (AICV) (LCIA). Se especifican los requerimientos para llevar a cabo un AICV y se relaciona con otras fases del ACV.

Figura 4: Metodología de Evaluación para el Ciclo de Vida - ISO 14040

Fuente: (ISO, 2006)

2.3.4 Herramienta Informática SIMAPRO

Generalidades
SimaPro es la herramienta profesional para recopilar, analizar y controlar los datos de rendimiento de sostenibilidad de los productos y servicios de su empresa. El software se puede utilizar para una variedad de aplicaciones, como informes de sostenibilidad, huella de carbono y agua, diseño de productos, generación de declaraciones ambientales de productos y determinación de indicadores clave de rendimiento. (SimaPro, 2017)

SimaPro incorpora las bases de datos más importantes, como Ecoinvent, ILCD, Agri-footprint, etc. Además permite crear bases de datos propias (creadas por el usuario). SimaPro permite utilizar las metodologías de evaluación de impacto más importantes y actualizadas, como: ILCD 2011 Midpoint+, CML – IA baseline, ReCiPe 2016, IPCC 2013 y Traci 2.1. Con esta herramienta se facilita el análisis y la representación gráfica de ciclos de vida complejos, de un modo sistemático y transparente. (ISM, 2018)

Ventajas

Cuando se trata de tomar decisiones sustentables y sólidas, se necesitan tanto los hechos correctos como la forma correcta de comunicar estos hechos. SimaPro fue desarrollado para ayudar a aplicar eficazmente la experiencia en ACV para impulsar el cambio, para proporcionar los datos necesarios para crear un valor sostenible.

SimaPro contiene lo último en métodos y bases de datos basados en la ciencia. Una amplia variedad de complementos y características de informes hace que sea más fácil ser plenamente consciente de las elecciones que hace al realizar sus estudios de ECV y abordar las inquietudes de colegas. De esta forma, los departamentos de una empresa pueden utilizar los conocimientos que proporciona para mejorar el ciclo de vida de sus productos y mejorar el impacto positivo de su empresa. (SimaPro, 2017)

Usos del SIMAPRO

Con SimaPro, puede:

- Modelar y analizar fácilmente ciclos de vida complejos de forma sistemática y transparente.
- Medir el impacto ambiental de sus productos y servicios en todas las etapas del ciclo de vida.
- Identificar los hotspots en cada enlace de su cadena de suministro, desde la extracción de materias primas hasta la fabricación, distribución, uso y eliminación. (SimaPro, 2017)
CAPITULO III

3. METODOLOGIA DE LA INVESTIGACION
De acuerdo con la metodología propuesta por la normativa ISO 14040 un proyecto de ACV puede dividirse en cuatro fases: objetivos y alcance del estudio, análisis del inventario, análisis del impacto e interpretación (Rieznik & Hernandez, 2005).

En el siguiente estudio se desarrolla cada una de las etapas de acuerdo a los lineamientos y normas establecidas, la información será manejada según las necesidades del proyecto a investigar.

3.1.1 FASE 1.- Objetivos y Alcance de estudio

En esta etapa se debe cuantificar las materias primas e insumos a utilizar en cada proceso de producción.

La primera fase consta de las siguientes subfases:

Objetivos

El objetivo de un ACV establece:

- La aplicación prevista.
- Las razones para realizar el estudio.
- El público previsto, es decir las personas a quienes se prevé comunicar los resultados del estudio.
- Utilizar los resultados en aseveraciones comparativas que se divulgarán al público. (ISO 14040, 2006)

Definición de Alcance

El alcance debería estar suficientemente bien definido para asegurar que la amplitud, profundidad y el nivel de detalle del estudio sean compatibles y suficientes para alcanzar el objetivo establecido.

El alcance incluye los siguientes puntos:

- El sistema del producto a estudiar.
- Las funciones del sistema del producto o, en el caso de estudios comparativos, los sistemas.
- La unidad funcional.
Los límites del sistema.
Los procedimientos de asignación.
Las categorías de impacto seleccionadas y la metodología de evaluación de impacto, y la subsecuente interpretación a utilizar.
Requisitos relativos a los datos.
Las suposiciones.
Las limitaciones.
Los requisitos iniciales de calidad de los datos.
El tipo de revisión crítica, si la hay el tipo y formato del informe requerido para el estudio.

La técnica de ACV es iterativa, y mientras se recopilan los datos e información, pueden tener que modificarse diversos aspectos del alcance para cumplir con el objetivo original del estudio. (ISO 14040, 2006)

Unidad Funcional

Un sistema puede tener varias funciones posibles y las seleccionadas para el estudio dependen del objetivo y alcance del ACV.

La unidad funcional define la cuantificación de las funciones identificadas (características de desempeño) del producto. El propósito fundamental de una unidad funcional es proporcionar una referencia a la cual se relacionan las entradas y salidas. Se necesita esta referencia para asegurar que los resultados del ACV son comparables. El carácter comparativo de los resultados de los ACV es particularmente crítico cuando se están evaluando sistemas diferentes, dado que hay que asegurar que estas comparaciones se hacen sobre una base común.

Es importante determinar el flujo de referencia en cada sistema del producto, para cumplir con la función prevista, es decir, la cantidad de productos necesaria para cumplir la función. (ISO 14040, 2006)

Límites del Sistema

El ACV se realiza definiendo los sistemas de producto como modelos que describen los elementos clave de los sistemas físicos. Los límites del sistema definen los procesos
unitarios a ser incluidos en el sistema. Idealmente, el sistema del producto se debería modelar de tal manera que las entradas y las salidas en sus límites sean flujos elementales. Sin embargo, no es necesario gastar recursos para cuantificar tales entradas y salidas que no producirán cambios significativos en las conclusiones generales del estudio.

La elección de los elementos del sistema físico a modelar depende de la definición del objetivo y el alcance del estudio, de su aplicación y público previstos, de las suposiciones realizadas, de las restricciones en cuanto a datos y costos y los criterios de corte. Los modelos utilizados deberían describirse y las suposiciones que fundamentan esas elecciones deberían identificarse. Los criterios de corte utilizados en un estudio deberían ser claramente entendidos y descritos.

Los criterios utilizados para establecer los límites del sistema son importantes para el grado de confianza en los resultados de un estudio y la posibilidad de alcanzar su objetivo.

Cuando se establecen los límites del sistema, se deben considerar varias etapas del ciclo de vida, procesos unitarios y flujos, como por ejemplo los siguientes:

- Adquisición de materias primas.
- Entradas y salidas en la secuencia principal de fabricación/procesamiento.
- Distribución/transporte.
- Producción y utilización de combustibles, electricidad y calor.
- Utilización y mantenimiento de productos.
- Disposición de los residuos del proceso y de los productos.
- Recuperación de productos utilizados (incluyendo reutilización, reciclado y recuperación de energía).
- Producción de materiales secundarios.
- Producción, mantenimiento y desmantelamiento de los equipos.
- Operaciones adicionales, tales como iluminación y calefacción.

En muchos casos, los límites del sistema definidos inicialmente tendrán que ser ajustados. (ISO 14040, 2006)

Requisitos de la Calidad de Datos
Los requisitos de calidad de los datos especifican, en términos generales, las características de los datos necesarios para el estudio.

Las descripciones de la calidad de los datos son importantes para comprender la fiabilidad de los resultados del estudio e interpretar correctamente los resultados del estudio. (ISO 14040, 2006)

3.1.2 FASE 2.- Análisis del Inventario

En la segunda fase se lleva a cabo el proceso de recolectar y cuantificar las entradas y salidas de materia y energía correspondientes al sistema producto durante su ciclo de vida (Rieznik & Hernandez, 2005).

Generalidades

El análisis del inventario implica la recopilación de los datos y los procedimientos de cálculo para cuantificar las entradas y salidas pertinentes de un sistema del producto.

La realización de un análisis de inventario es un proceso iterativo. A medida que se recopilan los datos y se aprende más sobre el sistema, se pueden identificar nuevos requisitos o limitaciones, que requieran cambios en los procedimientos de recopilación de datos, de manera que aún se puedan cumplir los objetivos del estudio. Algunas veces, se pueden identificar algunos asuntos que requieren una revisión del objetivo o del alcance del estudio. (ISO 14040, 2006)

Recopilación de datos

Los datos para cada proceso unitario dentro de los límites del sistema pueden clasificarse bajo grandes títulos que incluyen:

- Las entradas de energía, de materia prima, entradas auxiliares, otras entradas físicas.
- Los productos, coproductos y residuos.
- Las emisiones al aire, los vertidos al agua y suelo y otros aspectos ambientales.
La recopilación de datos puede ser un proceso intensivo en materia de recursos. Las limitaciones prácticas en la recopilación de datos deberían tenerse en cuenta en el alcance y documentarse en el informe del estudio. (ISO 14040, 2006)

Cálculo de datos

Después de la recopilación de datos, los procedimientos de cálculo, que incluyen:

- La validación de los datos recopilados.
- La relación de los datos con los procesos unitarios, y la relación de los datos con el flujo de referencia de la unidad funcional.
- Son necesarios para generar los resultados del inventario del sistema definido para cada proceso unitario y para la unidad funcional definida del sistema del producto que se va a modelar.

El cálculo de los flujos de energía deberían tener en cuenta las diferentes fuentes de combustibles y electricidad utilizada, la eficiencia de la conversión y la distribución del flujo de energía, así como las entradas y salidas asociadas a la generación y a la utilización de ese flujo de energía. (ISO 14040, 2006)

3.1.3 **FASE 3 y 4.- Identificación de impactos e interpretación**

Generalidades

La fase de evaluación de impacto de un ACV tiene como propósito evaluar cuán significativos son los impactos ambientales potenciales utilizando los resultados del ICV. En general, este proceso implica la asociación de los datos de inventario con las categorías de impactos ambientales específicos y con los indicadores de esas categorías para entender estos impactos. La fase de la EICV también proporciona información para la fase de interpretación del ciclo de vida. (ISO 14040, 2006)

La interpretación es la fase del ACV, en la cual los hallazgos del análisis del inventario y de la evaluación de impacto se consideran juntos o, en el caso de estudios de ICV, sólo se consideran los hallazgos del análisis del inventario. La fase de interpretación debería proporcionar resultados que sean coherentes con el objetivo y el alcance definidos, que lleguen a conclusiones, expliquen las limitaciones y proporcione recomendaciones. (ISO 14040, 2006)
Elementos

En esta etapa se realiza la identificación de efectos de carácter medio ambiental, producto de las falencias que tiene el proceso productivo en sí, posterior a esto se analiza cada uno de ellos y se los interpreta de acuerdo a parámetros establecidos en la normativa legal vigente con la finalidad de tomar medidas correctivas que permitan minimizar los problemas encontrados.

La estructura de esta fase viene determinada por la normativa ISO 14040, distinguiendo entre elementos obligatorios y elementos opcionales.

Los elementos considerados obligatorios son:

- Selección de las categorías de impacto, indicadores de categoría y modelos.
- Clasificación: en esta fase se asignan los datos procedentes del inventario a cada categoría de impacto según el tipo de efecto ambiental esperado. Una categoría de impacto es una clase que representa las consecuencias ambientales generadas por los procesos o sistemas de productos.
- Caracterización: consiste en la modelización, mediante los factores de caracterización, de los datos del inventario para cada una de dichas categorías de impacto (Rieznik & Hernandez, 2005).

3.2 Localización

El Análisis del ciclo de vida (ACV) de la producción del té de Jamaica del presente trabajo se realizó en el software SIMAPRO versión DEMO 8.1. Los datos usados se basaron en la revisión bibliográfica de producción de bebidas. El desarrollo del proyecto escrito se lo realizó en la biblioteca de la Universidad Estatal Amazónica sede Puyo con el uso de la biblioteca virtual que esta proporciona, la ejecución de la herramienta informática SIMAPRO versión DEMO 8.1 se llevó a cabo en los laboratorios informáticos de la misma.
3.3 TIPO DE INVESTIGACIÓN

El presente estudio contempla una Investigación de tipo Analítica.

El proyecto tiene como objeto el Análisis de Ciclo de vida del té de Jamaica, con el fin de determinar puntos de contaminación en cada uno de los procesos de producción de la bebida, todo ello se llevará a cabo a través del uso del software SIMAPRO versión DEMO 8.1 por medio esta herramienta informática se podrá obtener datos cuantificables que nos permitan analizar e interpretar los resultados para de esta manera mejorar el proceso productivo y disminuir el impacto medio ambiental que este genera.

![Esquema para una Investigación Analítica](image)

Figura 5: Esquema para una Investigación Analítica

Fuente: (Hurtado, 2007)

3.4 MÉTODOS DE INVESTIGACIÓN

El método a utilizar en el presente estudio es el Método Analítico.

El Método analítico es aquel método de investigación que consiste en la desmembración de un todo, descomponiéndolo en sus partes o elementos para observar las causas, la naturaleza y los efectos. El análisis es la observación y examen de un hecho en particular. Es necesario conocer la naturaleza del fenómeno y objeto que se estudia para comprender su esencia. Este método nos permite conocer más del objeto de estudio, con lo cual se puede: explicar, hacer analogías, comprender mejor su comportamiento y establecer nuevas teorías. (Ruiz Limón, 2006)
CAPITULO IV

4. RESULTADOS Y DISCUSIÓN

4.1 Análisis del ciclo de vida (ACV)

4.1.1 FASE 1.- Objetivos y Alcance de Estudio

La primera fase del análisis de ciclo de vida posee las siguientes subfases:

Alcance

El estudio propuesto contempla desde la purificación del agua, cocción y mezclado, embotellado (envasado y codificado), almacenamiento y distribución del producto final.

Figura 6: Representación gráfica del alcance del estudio a través de los 4 procesos a analizar mediante la metodología del ACV
Fuente: Elaboración propia, 2018

Unidad Funcional

En esta sub fase se tiene en cuenta la cantidad de bebida a producir con referencia a la demanda de la misma, se tomó como unidad funcional la cantidad de bebida producida en 1000 litros diarios de Té de Jamaica envasados en 2000 unidades de 500cc.
Límites del Sistema

Los límites del sistema hacen referencia a los procesos que no se tomaron en cuenta para el Análisis del ciclo de vida del té de Jamaica para el presente trabajo son:

Cultivo de Jamaica, procesamiento del endulzante, uso residuos plásticos luego del consumo de la Jamaica, Pérdidas generadas en el proceso de producción de té.

Figura 7: Representación gráfica de los 4 procesos del ACV tomando en cuenta partes del proceso que no serán tomados en cuenta, representados como límites del sistema.
Fuente: Elaboración propia, 2018

Para la cuantificación de materias prima, insumos y recursos se ha tomado como referencia estudios antes realizados, bases de datos e información recolectada, donde se especifica cada uno de ellos con su respectivo valor, unidad de medida y literatura de referencia.

En cuanto a datos de lo que conlleva a los procesos de producción en las diferentes etapas del proceso de producción de la bebida “té de Jamaica” se obtuvieron de la base de datos Ecoinvent, “La base de datos de Ecoinvent proporciona datos de procesos bien documentados para miles de productos, ayudándote a tomar decisiones verdaderamente
informadas sobre su impacto ambiental” (Ecoinvent, 2015), datos que se utilizan en el Software SIMAPRO versión DEMO 8.1.

4.1.2 Requisitos relativos a los datos

En el presente estudio se emplearon datos primarios y secundarios, los datos primarios hacen referencia a la cantidad de materias primas y energías empleadas en cada una de las etapas del proceso productivo. Los datos secundarios hacen referencia a la producción de dichas materias primas, para ellos se emplearon los datos existentes de estudios tomados como referencia.

4.2 FASE 2.- Análisis de Inventario

En esta etapa se cuantificaron los consumos de materias y energías, derivados de cada una de las etapas que hacen parte del proceso de producción del té de Jamaica, que en este caso se resume en 4 procesos que se definen en:

- Proceso de purificación del agua
- Proceso de cocción y mezclado
- Proceso de envasado y codificado
- Proceso de distribución

En cada proceso antes mencionado se determinó cantidades y se elaboró un flujo grama de cada uno de los procesos con la finalidad de tener mayor claridad, se estableció limitaciones y consideraciones a tomar en cada proceso a estudiar.
4.2.1 Análisis de Inventario del Proceso de purificación del agua

En la Figura 9 se muestra el diagrama de flujo del proceso de purificación de agua mediante osmosis inversa, se representa la entrada de agua cruda al sistema depurador la cual pasa a ser filtrada por cuarzo, arena y carbón posterior a eso el agua se dirige a una membrana semipermeable para eliminar iones, moléculas y partículas, se procede a la desinfección a través del ozono y radiación ultravioleta para ser reservada en un tanque para su posterior consumo, producto de este proceso se obtiene como resultado aguas residuales y residuos producto del sistema depurador y el agua de proceso lista para su uso.

Los datos de producción energética son calculados en base al estudio realizado por (Disotuar, 2012) sobre el consumo energético en plantas de osmosis inversa.
Tabla 1

Consumo energético de tratamiento de agua con proceso de osmosis inversa.

<table>
<thead>
<tr>
<th>Proceso: Osmosis inversa</th>
<th>Unidad</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productividad</td>
<td>50</td>
<td>L/h</td>
</tr>
<tr>
<td>Consumo energético</td>
<td>300</td>
<td>Watts</td>
</tr>
<tr>
<td>Índice de consumo energético</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Horas de producción de agua</td>
<td>20</td>
<td>Horas</td>
</tr>
<tr>
<td>Cantidad de agua tratada</td>
<td>1000</td>
<td>Litros</td>
</tr>
<tr>
<td>Consumo energético para 1000 L</td>
<td>6000</td>
<td>W</td>
</tr>
<tr>
<td>Consumo energético</td>
<td>300</td>
<td>Wh</td>
</tr>
</tbody>
</table>

Fuente: (Disotuar, 2012).

Limitaciones y consideraciones

- La cantidad de materias primas, energía y agua a utilizar para tratar 1000 litros de agua al día.
- El total de energía utilizada son 6000 W en 20 horas de producción al día. El consumo utilizado en esta etapa es de 300 Wh en esta etapa del proceso de producción
- Los datos de insumos en el proceso de purificación del agua fueron tomados de la base de datos Ecoinvent.
4.2.2 Análisis de Inventario del Proceso de Cocción y Mezclado

En la Figura 10 correspondiente al diagrama de flujo del proceso de cocción y mezclado existe el ingreso de agua procesada, energía y flor de Jamaica, la olla de cocción de capacidad de 100lt calienta el agua la cual es almacenada en un recipiente para posterior a esto añadir la flor de Jamaica y el azúcar dando como resultado la salida de aguas residuales, residuos producto del proceso y emisiones atmosféricas por la cocción de la misma y la producción del té ya elaborado.

Los datos correspondientes a la materia prima, empleada posteriormente para realizar el balance de materia de cada uno de los procesos productivos, fueron tomados en base a estudios realizados. El cálculo energético de la tabla, se basó en el libro de termodinámica de (Cengel, 2012)
Tabla 2

Energía necesaria para cocción de agua de Té de Jamaica

<table>
<thead>
<tr>
<th></th>
<th>1000</th>
<th>Calorías</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía necesaria para subir 1 °C a 1 Litro de agua</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatura del agua (Puyo)</td>
<td>20</td>
<td>°C</td>
</tr>
<tr>
<td>Temperatura de Ebullición</td>
<td>100</td>
<td>°C</td>
</tr>
<tr>
<td>Diferencia de temperatura</td>
<td>80</td>
<td>°C</td>
</tr>
<tr>
<td>Energía necesaria para punto de Ebullición de 1 Lt agua</td>
<td>80000</td>
<td>Calorías</td>
</tr>
<tr>
<td>Energía necesaria para punto de Ebullición de 100 Lt agua</td>
<td>8000000</td>
<td>Calorías</td>
</tr>
<tr>
<td>Energía necesaria para punto de Ebullición de 100 Lt agua</td>
<td>8000</td>
<td>Kcalorias</td>
</tr>
<tr>
<td>Energía necesaria para punto de Ebullición de 100 Lt agua</td>
<td>9,3</td>
<td>KWh</td>
</tr>
</tbody>
</table>

Fuente: (Cengel, 2012)

Limitaciones y consideraciones

En este proceso no se ha incluido datos de la producción del endulzante utilizado en el proceso de producción de té de Jamaica

4.2.3 Análisis de Inventario del Proceso de Envasado (Codificación)

Figura 10: Diagrama de Flujo-Proceso de Envasado

Fuente: Elaboración Propia, 2018
En la Figura 11 se representa el diagrama de flujo de envasado-codificado se tiene como ingreso el té de Jamaica elaborado, envases de plástico y tapas corona, el té es llevado a la envasadora posterior es coronada y codificada para llevar a la recepción del envase teniendo como salida de este proceso la generación de contaminantes atmosféricos al ambiente.

Limitaciones y Consideraciones

El proceso de envasado es considerado como un proceso de análisis ambiental prioritario puesto que implica el uso del material que puede ayudar a disminuir o aumentar el impacto medioambiental, y que posterior a esto será desechado y se convertirá en el mayor generador de residuos sólidos de difícil degrado, se toma este proceso como la base del ACV, por tal razón esta herramienta se enfocará en el análisis del uso de dos tipos de envases:

Envase 1: Polipropileno granulado.

Envase 2: Policloruro de vinilo

Los mismos que se encuentran en la base de datos utilizada por la herramienta informática SIMAPRO versión DEMO 8.1 y que de acuerdo a la misma son los más idóneos respecto al producto al cual está destinado.

En este proceso no se ha incluido las pérdidas generadas en el proceso de producción de té que se considerarán como desechos.
4.2.4 Análisis de Inventario de Distribución-Consumo

Figura 11: Diagrama de Flujo-Proceso de Distribución-Consumo
Fuente: Elaboración Propia, 2018

En la Figura 12 se representa el diagrama de flujo del proceso de distribución-consumo una vez obtenido el producto final se tiene como entrada el uso del transporte para su respectiva distribución y posterior consumo teniendo como salidas emisiones atmosféricas, envases y tapas coronas desechadas.

Limitaciones y consideraciones

En este proceso no se ha incluido los residuos plásticos luego del consumo de la Jamaica, puesto que después de la distribución final se desconoce el tiempo de consumo, número de envases consumidos y la disposición final de los mismos, siendo así una variable que dificulta tener un dato preciso.

4.3 FASE 3 Y 4.- Identificación de impactos e interpretación

El análisis del ciclo de vida de producción de té de Jamaica se realizó con 4 procesos: purificación del agua, cocción y mezclado, envasado y codificado, distribución, este se diseñó en el sofware SIMAPRO versión DEMO 8.1

Como se menciono anteriormente dentro de las limitaciones y consideraciones del análisis de inventario del proceso de envasado, el ACV se realizó con una variante en el material de envase a usar, los materiales propuestos fueron Polipropileno granulado y Policloruro de vinilo.
Figura 12: Red de flujo del Diseño de ACV del proceso de industrialización del té de Jamaica a través del software SIMAPRO versión DEMO 8.1. Envase 1 - Polipropileno granulado.

En el Figura 13 se observa la representación gráfica de la red del ACV del Té de Jamaica, la distribución de procesos y la asignación de materiales y recursos utilizados en cada uno de ellos, en este caso el té de Jamaica es analizado en base al envase número 1 perteneciente al polipropileno granulado, los datos del proceso de tratamiento de agua, cocción-mezclado y distribución-consumo son los mismos al del esquema posterior, a excepción del envasado. La representación genera en sí el panorama global del ACV del producto.
Figura 13: Red de flujo del Diseño de ACV del proceso de industrialización del té de Jamaica a través del software SIMAPRO versión DEMO 8.1. Envase 2.- Policloruro de vinilo

En el Figura 14 se observa la representación gráfica de la red del ACV del Té de Jamaica, la distribución de procesos y la asignación de materiales y recursos utilizados en cada uno de ellos, en este caso el té de Jamaica es analizado en base al envase número 2 perteneciente al policloruro de vinilo, los datos del proceso de tratamiento de agua, cocción-mezclado y distribución-consumo son los mismos al del esquema anterior, a excepción del envasado. La representación genera en si el panorama global del ACV del producto.
4.3.1 Análisis de Impacto – Caracterización

Figura 14: Gráfica comparativa de los impactos ambientales de la producción de té de Jamaica en dos tipos de envase plástico polipropileno granulado y policloruro de vinilo.

Fuente: SIMAPRO versión DEMO 8.1, 2018

Tabla 3

Datos comparativos de los impactos ambientales de la producción de té de Jamaica en dos tipos de envase plástico polipropileno granulado, policloruro de vinilo.

<table>
<thead>
<tr>
<th>Categoría de impacto</th>
<th>Unidad</th>
<th>Life Cycle_Te de Jamaica</th>
<th>Life Cycle_Te de Jamaica Env.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcinogens</td>
<td>DALY</td>
<td>1,63E-6</td>
<td>5,82E-6</td>
</tr>
<tr>
<td>Resp. organics</td>
<td>DALY</td>
<td>3,22E-7</td>
<td>3,22E-7</td>
</tr>
<tr>
<td>Resp. inorganics</td>
<td>DALY</td>
<td>0,00021</td>
<td>0,000258</td>
</tr>
<tr>
<td>Climate change</td>
<td>DALY</td>
<td>4,33E-5</td>
<td>4,65E-5</td>
</tr>
<tr>
<td>Radiation</td>
<td>DALY</td>
<td>6E-9</td>
<td>1,02E-3</td>
</tr>
<tr>
<td>Ozone layer</td>
<td>DALY</td>
<td>1,03E-9</td>
<td>1,33E-9</td>
</tr>
<tr>
<td>Ecotoxicity</td>
<td>PAF* m²yr</td>
<td>1,68</td>
<td>5,06</td>
</tr>
<tr>
<td>Acidification/ Eutrophication</td>
<td>PDF* m²yr</td>
<td>6,95</td>
<td>6,93</td>
</tr>
<tr>
<td>Land use</td>
<td>PDF* m²yr</td>
<td>0,149</td>
<td>0,203</td>
</tr>
<tr>
<td>Minerals</td>
<td>MJ surplus</td>
<td>0,352</td>
<td>0,61</td>
</tr>
<tr>
<td>Fossil fuels</td>
<td>MJ surplus</td>
<td>983</td>
<td>616</td>
</tr>
</tbody>
</table>

Fuente: SIMAPRO versión DEMO 8.1, 2018
En la Figura 15 se representa los impactos correspondientes a la producción del té de Jamaica. El análisis se realizó con el software SIMAPRO versión DEMO 8.1 con el método Eco-Indicador 99 (H) V2.10 /Europe El 99H/A. Como se puede observar en la Tabla 3 los recursos fósiles son los más afectados en este proceso productivo, ya se utilizan en las etapas de envasado, transporte y distribución. El segundo impacto corresponde a la acidificación del medio, esto se da por las emisiones que se atribuyen a los procesos de generación de energía en cada una de las etapas. De la comparativa entre materiales de envase se observa con color celeste de polipropileno granulado consume más recursos fósiles y en los procesos de acidificación la emisión entre los dos materiales es similar.
4.3.2 Análisis de Impacto- Normalización

![Gráfica de Normalización de Impactos](image)

Figura 15: Gráfica de Normalización de Impactos
Fuente: SIMAPRO versión DEMO 8.1, 2018

Tabla 4

<table>
<thead>
<tr>
<th>Se</th>
<th>Daño de categoría / Unidad</th>
<th>Life Cycle_Te de Jamaica</th>
<th>Life Cycle_Te de Jamaica Env.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>Human Health</td>
<td>0,0231</td>
<td>0,0355</td>
</tr>
<tr>
<td>✔</td>
<td>Ecosystem Quality</td>
<td>0,00127</td>
<td>0,00133</td>
</tr>
<tr>
<td>✔</td>
<td>Resources</td>
<td>0,13</td>
<td>0,0818</td>
</tr>
</tbody>
</table>

Fuente: SIMAPRO versión DEMO 8.1, 2018

El software clasifica en tres categorías de daño las cuales están dadas en: salud humana, calidad de ecosistemas y uso de recursos, dentro de este análisis la normalización permitió diferenciar que el mayor daño por la actividad de producción de Té de Jamaica es sobre
el uso de recursos naturales, el envase de polipropileno granulado presenta un mayor grado de contaminación frente al envase de policloruro de vinilo. Otro daño significativo es el causado a la salud humana teniendo una mayor repercusión sobre este el uso del envase de material polipropileno granulado. La calidad de los ecosistemas se ve mínimamente afectado por este sector productivo.
4.3.3 Análisis de Impactos - Ponderación

Figura 16: Gráfica de Ponderación de Impactos
Fuente: SIMAPRO versión DEMO 8.1, 2018

Tabla 5

Datos de ponderación de Impacto

<table>
<thead>
<tr>
<th>Daño de categoría / Unidad</th>
<th>Life Cycle_Te de Jamaica</th>
<th>Life Cycle_Te de Jamaica Env.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>Pt 38,2</td>
<td>Pt 31,1</td>
</tr>
<tr>
<td>Human Health</td>
<td>Pt 11,5</td>
<td>Pt 14,2</td>
</tr>
<tr>
<td>Ecosystem Quality</td>
<td>Pt 0,508</td>
<td>Pt 0,534</td>
</tr>
<tr>
<td>Resources</td>
<td>Pt 26</td>
<td>Pt 16,4</td>
</tr>
</tbody>
</table>

Fuente: SIMAPRO versión DEMO 8.1, 2018

En la Figura 17 se presentan los valores de ponderación estimados en el software SIMAPRO versión DEMO 8.1. Se puede señalar que aunque existe daño en las diferentes categorías los mismos no se consideran gravemente significativos, por cuanto en esta escala se presenta 26 Pt sobre 100 posibles en el envase de polipropileno granulado sobre el uso de los recursos. En la salud humana se observa una ponderación aun menor a la anterior con un total de 14,2 Pt en el envase de policloruro de vinilo siendo mayor a la...
del envase de polipropileno granulado con 11,6 Pt. En la calidad de los ecosistemas se evidencia una mínima incidencia.
4.3.4 Análisis de Impactos- Puntuación Única

Figura 17: Gráfica de Puntuación Única de Impactos
Fuente: SIMAPRO versión DEMO 8.1, 2018

Tabla 6

<table>
<thead>
<tr>
<th>Sección</th>
<th>Daño de categoría</th>
<th>Unidad</th>
<th>Life Cycle_Te de Jamaica</th>
<th>Life Cycle_Te de Jamaica Env.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>Pt</td>
<td>38,2</td>
<td>31,1</td>
<td></td>
</tr>
<tr>
<td>Human Health</td>
<td>Pt</td>
<td>11,6</td>
<td>14,2</td>
<td></td>
</tr>
<tr>
<td>Ecosystem Quality</td>
<td>Pt</td>
<td>0,508</td>
<td>0,534</td>
<td></td>
</tr>
<tr>
<td>Resources</td>
<td>Pt</td>
<td>26</td>
<td>15,4</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: SIMAPRO versión DEMO 8.1, 2018

En la Figura 18 se observa la puntuación única de impactos ambientales, esto indica la sumatoria de las tres categorías de daño las cuales están dadas en: salud humana, calidad de ecosistemas y uso de recursos. Se puede observar que el uso de polipropileno
granulado presenta un mayor grado de contaminación frente al envase de policloruro de vinilo.
CAPITULO V

5. CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

- Para iniciar un análisis de ciclo de vida de un proceso, producto o servicio es indispensable contar con la información necesaria sobre el proceso productivo, materias primas y tecnologías a utilizarse con el fin de evaluar el sistema de la mejor manera.

- Es importante establecer el inicio y fin de los procesos, considerar el consumo de productos, materias primas, energías, etc. Con el fin de delimitar el sistema que se va analizar con el ACV.

- Según la metodología del SIMAPRO versión DEMO 8.1 se concluye que el proceso de envasado y codificado es el que mayor impacto genera al ambiente.

- Mediante el ACV enfocado al proceso de envasado y codificado la herramienta informática SIMAPRO versión DEMO 8.1 ofrece dos opciones de botellas plásticas para el envasado del producto: Envase 1 Polipropileno granulado, Envase 2 Policloruro de vinilo los cuales mediante el análisis del ACV arroja como resulta que el uso del Envase 2 Policloruro de vinilo es de menor impacto al ambiente.

- Del análisis de ciclo de vida realizado para la producción de té de Jamaica se concluye que el mayor impacto ambiental es el que se causa por el uso de recursos fósiles, en la producción de envases, uso de materiales y producción de energía, transporte, etc.

- El ACV permite explorar otros tipos de procesos, materias, recursos y tecnologías que darán como resultado nuevos procesos que tengan mayores beneficios ambientales y económicos para la empresa.
RECOMENDACIONES

- Durante el desarrollo del presente proyecto se pudo evidenciar que la metodología del Análisis de Ciclo de Vida según la ISO 14040, es una metodología poco desarrollada en el país por lo cual se recomienda el uso y aplicación de esta como una herramienta de la gestión ambiental para la producción más limpia implicando la reducción de costos, mejora de procesos, productos y servicios y el desarrollo sostenible.

- Para el proceso de envasado de una planta de producción de té de Jamaica se recomienda el uso de envases de policloruro de vinilo ya que tiene menor impacto ambiental que el polipropileno granulado.

- Una vez identificados los impactos que genera un proceso, producto o servicio es recomendable implementar medidas que permitan mitigar estos problemas, con la finalidad de crear estrategias oportunas para la corrección de las mismas.

- El SIMAPRO es una herramienta informática desarrollada en sistemas europeos para el ACV, es recomendable crear un software que tenga una base datos a nivel de países latinoamericanos puesto que la normativa, recursos, tecnologías y el medio es sí es bastante disímil.

- Se recomienda el uso del software SIMAPRO en la industrias, dado a la confiabilidad de los datos mediante el uso de la base de datos Ecoinvent la cual proporciona una amplia y confiable selección de materiales y recursos para el ACV procesos, productos y servicios.
CAPITULO VI

6. Bibliografía

a, C. Y. (s.f.). Termodinámica .

EKOS. (2018). BUSINESS CULTURE.

MIPRO. (2013). *Sector manufacturero industrial aporta al crecimiento económico del país*.

